4圆澡光

第15卷 第10期

Na4Ge9O20:Cr3+ 的吸收和辐射寿命与温度的关系

 陈书潮
 H-J.Weber

 (厦门大学物理系)
 (西德多特蒙德大学)

提要:报道了在10~300K温度范围内,Na4Ge9O20单晶中掺杂 Cr³⁺的吸收 谱、振子强度以及 R 线的辐射寿命与温度关系;用激发态粒子数遵从玻尔兹曼热平 衡分布的理论模型解释了 R 线辐射寿命与温度关系的测量结果;提出了在复杂晶体 中确定 Cr³⁺ 占位的新方法。

Temperature dependence of absorption and radiative lifetime of Cr³⁺doped Na₄Ge₉O₂₀ crystals

Chen Shuchao

H-J. Weber

(Xiaman University, Xiaman) (Dortmund University, West Germany)

Abstract: Absorption spectra, oscillator strength, radiative lifetime of R-line in Na₄Ge₉O₂₀: Cr^{3+} were investigated in the temperature range of 10K and 300K. The measured temperature dependence of R-line was explained by a theoretical model which supposed that the population in excited states abode by Boltzmann distribution. A new method for determining positions of Cr^{3+} in complex crystals has been developed.

一、引 言

在大部分晶体中掺杂的三价铬离子 Cr⁸⁺占据八面体对称晶格位置或具有低对 称畸变的八面体对称位置,即使掺杂在非晶 体玻璃中的 Cr³⁺ 也往往假定它们占有上述 的对称位置^[1,2]。Na₄Ge₉O₂₀ 的单晶中包含有 4 个不同对称单元,例如 GeO₆ 的八面体、 GeO₄ 的 4 角对称结构等。因此,掺杂在其中 的 Cr³⁺ 会受到较复杂的晶场作用。它可能用 来观测在简单结构尚观察不到的光学特性。

对自发辐射寿命的研究是研究弛豫机构

的重要手段。红宝石中 Cr³⁺ 的 *R* 线的自发 辐射寿命在常温下长达数毫秒以上,而在祖 母绿和其他许多材料中, Cr³⁺ 的 *R* 线常温下 的自发辐射寿命却短到纳秒(ns)数量级,而 且往往与温度有密切关系。为了探讨上述问 题,我们研究了 Na₄Ge₉O₂₀:Cr³⁺ 中 Cr³⁺ 的 *R* 线自发辐射寿命与温度关系以及吸收等其 他光学性质。

二、实验方法和装置

Na₄Ge₉O₂₀ 单晶是用 Czchochrolski 方 收稿日期: 1987年4月27日。 法制备的, Cr^{3+} 掺杂是以 Cr_2O_3 加入其熔体 中的。实验样品是两面光学抛光的平板, 厚度为 $0.3 \cong 5$ mm, 直径 $5 \cong 10$ mm。 晶 体的 Cr^{3+} 浓度与熔体的 Cr^{3+} 浓度比是 0.94。以下采用的浓度是按 Cr^{3+} 与 Ge^{4+} 的 克分子比。 在我们的实验中,最高浓度是 0.5%。

吸收谱是用一台 Cary 17 分光光度计在 10~300K 温度间隔内测得的;激发谱是用一 台准分子激光泵浦染料激光器作为样品的泵 浦光源,其脉宽为 10 ns,脉冲功率最大可达 20 MW/em²,半功率可调范围为 580~600 nm。自发辐射寿命的测量是用一台 瞬时记 录仪记录的,其最大分辨率为 10 ns。

三、实验结果和分析

3.1 吸收谱和振子强度

图 1 是 0.023% 浓度的 Cr^{3+} 和入射光 偏振方向平行 c 轴的吸收谱,与红宝石中的 Cr^{3+} 的吸收谱线相比,其谱线大大被展宽了, 特别在较大的 Cr^{3+} 浓度时更是如此。在所 有的样品中,我们都记录到两个宽的吸收带, 称之为 U 带和 Y 带,且 Y 带是最强的吸收 带。由于这两个带的强烈重叠,我们用如下 方法来分析这些线的特征。首先假定吸收系 数 $\alpha(\omega)$ 具有 Urbach 尾巴和考虑带 隙 吸收 的影响,Y 带和 U 带均具有高斯型吸收,以 强吸收带 Y 对弱带 U 的影响加 以修正。由 此算出的部分振子强度列于表 1。它们具有 如下几个主要特点:

 在 10~300K 温度范围内,吸收中心 频率 ν₀ 及振子强度 f 变化不大;

② U 带的幅值并不随 Cr³⁺ 浓度呈线性 增加;

③ Y 带和 U 带的带宽随温度降低略 有 缩小,但变化并不显著, Y 带在高 Cr³⁺ 浓度 时变化较大。

此外,我们还观察到了几条锐线,如图

图 1 Na₄Ge₉O₂₀:Cr³⁺的吸收谱 Cr³⁺浓度 0.023%, **E**_{ex} // c

2 所示。根据配位场理论^[33]及 Cr³⁺在其他 晶体的吸收和辐射特性,我们标定各吸收线 和吸收带分别为:三条锐线分别为: B线 $[{}^{4}A_{2}(F) \rightarrow {}^{2}E_{g}], B' 线[{}^{4}A_{2}(F) \rightarrow {}^{2}T_{1}], 以及$ $B 线[{}^{4}A_{2}(F) \rightarrow {}^{2}T_{2}], 而 Y 带为 {}^{4}A_{2}(F) \rightarrow$ ${}^{4}T_{1}(F), U 带为 {}^{4}A_{2}(F) \rightarrow {}^{4}T_{2}(F)$ 。从这些 线的位置,我们按 Perumareddi 的方法^[33]算 出了配位场参数 D_{q} , B 和 C 值列于表 2, 同 时列出其他晶体的 D_{q} , B α C 值加以比较。可 以看出,它们和其他晶体相比,没有本质上的 区别。因此,我们可以认为,在 Na₄Ge₉O₂₀ 中 的 Cr³⁺ 的 3d 电子具有与其他晶体中相类似 的性质,简单晶场理论基本上仍可适用。

三条锐线与温度依赖关系不同, R 线和 R'线从 10~300K 都可观察到, 而 B 线的振 子强度则随温度升高而迅速降低, 到 200K 时, B 线几乎消失, 并且从 10~200K, 其中心 频率向低能边移动了 11 cm⁻¹。 R'线的中心 频率随温度有很微小的位移, 但 R 线频率始 终保持不变。

3.2 R线的辐射谱

用波长为 586 nm 激光激发后,我们记录了自发辐射谱,其中最主要的辐射是波长

表1 Cr³⁺ 的浓度不同时, U 带和 Y 带的 振子强度与带宽

1 浓度(r) 2 偏振(s) 3 温度(s)	U 带	Y 带	
1 0.23×10 ⁻⁵ 2 ε⊥c 3 293K 10K	$\begin{array}{ccc} \Delta \nu & f \\ [cm^{-1}] \\ 1700 & 13 \times 10^{-4} \\ 1900 & 21 \times 10^{-4} \end{array}$	$\begin{array}{c c} \Delta\nu & f \\ [cm^{-1}] \\ 3400 & 4.8 \times 10^{-3} \\ 3400 & 5.5 \times 10^{-3} \end{array}$	
1 5.15×10 ⁻⁸ 2 e⊥c 3 293K 10K	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4800 6.9×10 ⁻³ 3700 6.0×10 ⁻³	

表 2 Na₂Ge₉O₂₀:Cr³⁺ 的配位场参数 与其他晶体比较

晶体	$D_q[\text{cm}^{-1}]$	<i>B</i> [cm ⁻¹]	<i>C</i> [cm ⁻¹]	R[nm]
红宝石	1800	640	3300	0.190
Y-Ga-Garnet	1650	570	3400	0.193
祖母绿	1630	780	2960	0.194
Na4Ge9O20:Cr3+	1710	549	3400	a)0.191
	1460	750	2750	β)0.254

为701.5 nm, 线宽 $\delta < 0.12$ nm 的强锐线。 在 $10 \sim 300$ K 温度范围内其中心波长保持

表3 在不同晶体中 Cr³⁺ 的 R 线波长

晶体	波长(nm)	
红宝石[4]	693.5	
绿宝石[5]	632.2	
网 玉[6]	689.7	
MgO [7]	698.5	
Na4Ge9O20:Cr3+	701.5	

表4 自发辐射强度与入射光偏振方向关系

enservice de l	$E_{em} \parallel c$	$E_{em} \perp c$	10
$E_{ex} \parallel c$	1.0	1.4	1992
$E_{ex} \perp c$	2.8	4.4	

E_{em}: 辐射光的偏振方向 *E_{ex}*: 入射光的偏振方向

不变。此线就是 R 线, 即 ${}^{2}E_{g} \rightarrow {}^{4}A_{2}(F)$ 的 跃迁。和其他晶体中 Cr^{3+} 的 R 线相比, $Na_{4}Ge_{9}O_{20}$: Cr^{3+} 的 R 线移向低能边(见表 3)。这是由于母晶中没有对应的 3 价阳离子 可被 Cr^{3+} 取代之故。应当指出, R 线的辐射 频率与吸收频率之间存在的微小差别是首次 记录到的。说明在这种复杂晶场的作用下, ${}^{2}E_{g}$ 能级在 SCC 图中已从通常的对称位置变 成轻微的非对称了。

在 R 线的低能边,我们也记录到了一系 列的辐射线,它是属于 R 线的振动边带。

辐射线除了其强度与温度有关外,还与 入射光的偏振方向有关。各辐射线的频率位 置与 Or³⁺ 的浓度及偏振方向无关。表4给出 了辐射强度与入射光偏振方向的关系。当入 射光偏振方向垂直 c 轴时,其辐射光强是平 行 c 轴的 4.4 倍,这一点与吸收谱的偏振依 赖关系一致。

3.3 R 线的自发辐射寿命

为了弄清 Na₄Ge₉O₂₀:Cr³⁺ 的 R 线在室 温下变小到纳秒(ns)数量级之因,我们仔细 地研究了辐射寿命与温度的关系。发现不同 浓度的 Cr³⁺ 掺杂样品都具有相同的 温度 依 赖关系。这个结果与红宝石情况有些不同。 图 3 是用激发态粒子布居数服从玻尔兹曼分 布的简单模型给出的理论结果。

3.4 理论模型

除了振动边带以外,在 R 线附近没有发 现其他辐射,因此我们用如图 4 的能级模型 来拟合实验结果。图中的 E₀ 是基态, E₁及 E₂ 是激发态,而且它们靠得很近,即

$$\Delta E_{21} = (E_2 - E_1) \ll 1,$$

并随时处于热平衡,其粒子布居数服从玻尔 兹曼分布。 $E_1 \rightarrow E_0$ 的跃迁是有辐射的,而 $E_2 \rightarrow E_0$, E_m 跃迁是无辐射的,它们的本征 激发寿命分别为 τ_{10} 及 τ_{2m0} , E_m 可以是一组 能级系列。

图 3 R 线的辐射寿命与温度关系(ln v ST-1)

若以 N_1 及 N_2 分别表示 E_1 及 E_2 上的 布居数, N表示 E_1 及 E_2 上布居数的总和, 则有.

$$\begin{cases} N_2 = N_1 e^{-\Delta E_{11}/kT} \\ N = N_1 + N_2 \end{cases}$$
(1)

式中 k 是玻尔兹曼常数。由于 E1及 E2的

粒子数通过热平衡过程互相补充,因此不可 能单独测量 N_1 或 N_2 的衰减速率,或者说, 不可能单独测 τ_{10} 或 τ_{2m0} 。实际上测量到的 是 N的衰减速率,或者说观察到的只是 E_1 及 E_2 组成的上能级系统的总等效寿命 τ_o N的速率方程为:

$$\frac{dN}{dt} = -\frac{N}{\tau} = -\frac{N_1}{\tau_{10}} - \frac{N_2}{\tau_{2m0}}$$
$$= -N_1 \left(\frac{1}{\tau_{10}} + \frac{1}{\tau_{2m0}} e^{-\Delta E_{a1}/kT}\right) \quad (2)$$

由(1)得:

$$N = N_1 (1 + e^{-\Delta E_{21}/kT})$$
 (3)

把(3)代入(2)得:

$$\frac{1}{\tau} = \left(\frac{1}{\tau_{10}} + \frac{1}{\tau_{2m0}} e^{-\Delta E_{21}/kT}\right) \left(1 + e^{-\Delta E_{21}/kT}\right)^{-1}$$
(4)

由于有辐射跃迁只有 $E_1 \rightarrow E_0$,因此我们 测到的辐射频只能是 $\omega = (E_1 - E_0)/\hbar$ 。若 $\Delta E_{21} \gg kT$,则(4)式可简化为:

$$\frac{1}{\tau} = \frac{1}{\tau_{10}} + \frac{1}{\tau_{2m0}} e^{-4E_{21}/kT}$$
(5)

由于 $\tau_{10} \gg \tau_{2m0}$,因此,在一定温度范围内,仍 可使 $\tau_{2m0}e^{4E_{11}/kT} \ll \tau_{10}$,这时(5)又可简化为:

$$\Delta E_{21} = kT \ln\left(\tau/\tau_{2m0}\right) \tag{6}$$

就是说, $\ln \tau = 1/T$ 在一定温度范围内基本 上呈线性关系。由(4)可看到: 当 $T \to \infty$ 时, $\tau \to 2\tau_{2m0}$, 而当 $T \to 0$ 时, $\tau \to \tau_{100}$ 由这些 结果再加上(6)式, 我们很容易从实验上决定 $\Delta E_{21}, \tau_{10}$ 及 τ_{2m00} 。当然,由于实验温度总是 在有限区间,当 $\Delta E_{21}, \tau_{10}$ 及 τ_{2m0} 初步确定 后,尚需用(4)式对实验结果进行拟合,进一 步更精确地确定 $\Delta E_{21}, \tau_{10}$ 及 τ_{2m00} 。图4的 实线就是用(4)式对实验点的最佳拟合,并 得到 $\Delta E_{21} = 46$ meV, $\tau_{10} = 1$ ms以及 $\tau_{2m0} =$ 10 ns.这个结果说明理论模型与实验结果很 符合。

3.5 用 Dg 值确定 Cr3+ 的占位

在所有我们列出的晶体中, Cr^{3+} 最近邻 都是 O^{-2} 离子, 差别只在于 Cr^{3+} 与 O^{-2} 之间 的距离 R。从配位场理论知道, $Dq \propto R^{-5}$, 在

. 605 .

图 5 利用 *D_q*∞*R*⁻⁵ 关系确定 Cr³⁺ 在 Na₄Ge₉O₂₀ 晶体中的占位 (*x*) Na₄Ge₉O₂₀ 晶体的结构; (*b*) *D_q*VSR⁻⁵ 图; (*c*) 14600cm⁻¹ 的吸收

我们的晶体中, Cr^{3+} 存在着几种占位的可能 性。为了确定它的占位, 我们把已知 Dq 及 R的几种材料做 $Dq \propto R^{-5}$ 的直线关系图, 然后 再把我们测到的 $Na_4Ge_9O_{20}:Cr^{3+}$ 的 Dq 值标 入图, 并作平行于 R^{-5} 轴的直线使之与 $Dq \propto R^{-5}$ 直线相交, 最后在交点附近找出与结构 相符的 R 值, 就得到 Cr^{3+} 的占位。得到的 结果是: 在 Cr^{3+} 浓度较低时, Cr^{3+} 只占据原 子间距为 0.191 nm 的 Ge⁴⁺ 的八面体对称位 置。在 Cr^{3+} 浓度较高时, 有少部分的 Cr^{3+} 占 据着最近邻为 O^{-2} , 原子间距为 0.254 nm 的 八面体对称位置。这时我们在 14600 cm⁻¹ 附 近记录到了一个微弱吸收, 它对应 Dq 值为 1460 cm⁻¹。这是在这种晶体中可能占位的 最低 D_q 值。如图 5 所示。

四、讨 论

根据量子选择定则, Cr³⁺ 中各能级间都 是电偶矩禁止跃迁的, 但从我们测到的振子 强度远大于磁偶矩和电四极矩的辐射跃迁表 明,存在着偶极胁迫跃迁。

Kisliuk 等^[7] 在祖母绿的自发辐射寿命的观测中,也观察到类似的温度依赖关系。他

们观察到一条锐线重在一个宽辐射带上,两 者具有相反的强度与温度依赖关系。因此,他 们假定两个上能级对下能级 Eo 都是有辐射 跃迁,两个上能级分别定为 $^{2}E_{o}$ 及 $^{4}T_{2}(F)_{o}$ 可是在Na4GeoO20:Cr3+中我们只观察到一 条辐射线,始终观察不到"T₂(F)的宽带辐射。 所以只能认为 E, 对下能级是无辐射跃迁, 这 个能级可能是: $(a)^{4}T_{2}(F)$, 我们测到的 △E21=46 meV 正好也与 Kisliuk 在祖母绿 中得到的一样。如果是如此,必须假定 ${}^{4}T_{2}(F) \rightarrow {}^{4}A_{2}(F)$ 是无辐射的,然而这和其他 许多母晶中的结果是矛盾的,另一方面, 10ns 对于无辐射跃迁是太大了,因此, 这种 可能性极小。(b)微量掺杂的无辐射跃迁能 级与²E。靠近。由于这种掺杂十分微量,比 如说,只有 Or3+ 浓度的 10-3~10-5,那么根 据我们上面得到的10ns寿命,可以推断其 真实的无辐射跃迁寿命应为10~0.1ps。若 是更微量的掺杂,其寿命就更短了。这样的 寿命对无辐射跃迁从数量级上来看,更为合 适。所以我们认为掺杂的可能性更大些。可 是目前还没有有力的实验说明是何种微量掺 杂及何能级与²E。靠近。

U 带和 Y 带的展宽与 ⁴A₂(F) 附近的声

子过程有关。它们的中心频率基本不随温度 变化,说明了 ${}^{4}A_{2}(F)$ 附近各声能级上的布居 数分布函数不会随温度变化,他们的对称分 布中心不会被温度变化所破坏。线宽随温度 变化与吸收过程中的声子过程有关。在高 Or^{3+} 浓度时 Y 带带宽随温度变化特别显著, 并使在低温下振子强度反而略有缩小,可能 是具有较高能量的声子过程随温下降而迅速 消失之因。造成它们消失的原因目前还不清 楚。U 带的振子强度与 Or^{3+} 浓度不成比例 变化,在低浓度时振子强度反而比高浓度时 还强。这可能是由于在较高浓度时, Or^{3+} 又 占据了其他对称的占位,形成更为复杂的晶场,由于 **U** 带是较弱带,受其影响要比 *Y* 带强得多。

参考文献

- 1 Andrews L J et al. J. Chem., 1981; 74(10); 5526
- 2 Brawer S A, White W B. J. Chem. Phys., 1977; 67
 (5): 2043
- 3 Perumareddi J R. Coordin. Chem. Rev., 1969; 4: 73
- 4 Imdusch G F. Phys. Rev., 1967; 153: 326
- 5 Fonger W H, Struck C W. Phys. Rev. B, 1975; 11: 3251
- 6 Morita M, Murata K. J. Phys. Japan., 1975; 38 1048
- 7 Kisliuk P, Moore C A. Phys. Rev. 1967; 60(2): 307:

60mWHe-Ne激光器, M₁、M₂、M₃是全反镜, A是半 波片, 其作用是使激光束的偏振方向在晶体入射面 内, 以便得到较高的衍射效率, BS 是分束器, L₁、L₂ 是透镜, l₁是扩束镜, S₁是光阑, l₂S₂是针孔滤波器, O是试件, C是 Fe:LiNbO₃(记录介质)。实验中采用 了两个试件, 其一是有机玻璃作成的圆环, 另一是环 氧树脂作成的圆盘, 在 x, y 平面内加应力。

4. 实验结果

(1) 图 2(a)是圆环全息图的再现像,(b)是对圆

环加载后二次曝光的干涉图。

(2) 图 3 中的(a)、(b)、(c) 是圆盘在不同 载 荷 下的全息干涉图。

参考文献

- H. M 史密斯。全息记录材料,科学出版社,(中 译本),1984年;129
- 2 Huigurad J P et al. Appl. Opt., 1977; 16(11);2796
- 3 Huiguard J P, Herriau J F. Appl. O pt. 1977;
 16(7):1087